CGO rbfSolve: Difference between revisions

From TomWiki
Jump to navigationJump to search
No edit summary
 
(26 intermediate revisions by 2 users not shown)
Line 42: Line 42:
Result = tomRun('rbfSolve', Prob);
Result = tomRun('rbfSolve', Prob);
</pre>
</pre>
==Usage==
See [[CGO solver usage]]


==Description of Inputs==
==Description of Inputs==


Problem description structure. The following fields are used:
===Problem structure===
The following fields are used in the problem description structure '''Prob''':


{|class="wikitable"
{|class="wikitable"
!Field||Description
!Field||Description
|-valign="middle"
|''Name''||rowspan="16"|See [[Common input for all CGO solvers]]
|-valign="top"
|-valign="top"
|''Name''||Name of the problem. Used for security when doing warm starts.
|''FUNCS.f''
|-valign="top"
|-valign="top"
|''FUNCS.f''||Name of function to compute the objective function.
|''FUNCS.c''
|-valign="top"
|-valign="top"
|''FUNCS.c''||Name of function to compute the nonlinear constraint vector.
|''x_L''
|-valign="top"
|-valign="top"
|''x_L''||Lower bounds on the variables. Must be finite.
|''x_U''
|-valign="top"
|-valign="top"
|''x_U''||Upper bounds on the variables. Must be finite.
|''b_U''
|-valign="top"
|-valign="top"
|''b_U''||Upper bounds for the linear constraints.
|''b_L''
|-valign="top"
|-valign="top"
|''b_L''||Lower bounds for the linear constraints.
|''A''
|-valign="top"
|-valign="top"
|''A''||Linear constraint matrix.
|''c_L''
|-valign="top"
|-valign="top"
|''c_L''||Lower bounds for the nonlinear constraints.
|''c_U''
|-valign="top"
|-valign="top"
|''c_U''||Upper bounds for the nonlinear constraints.
|''WarmStart''
|-valign="top"
|-valign="top"
|''WarmStart''||Set true (non-zero) to load data from previous run from ''cgoSave.mat ''and resume optimization from where the last run ended. If ''Prob.CGO.WarmStartInfo ''has been defined through a call to ''WarmDefGLOBAL'', this field is used instead of the ''cgoSave.mat ''file. All CGO solvers  uses the same mat-file and structure field and can read the output of one another.
|''MaxCPU''
|-valign="top"
|-valign="top"
|''MaxCPU''||Maximal CPU Time (in seconds) to be used.
|''user''
|-valign="top"
|-valign="top"
|''user''||User field used to send information to low-level functions.
|''PriLevOpt''
|-valign="top"
|-valign="top"
|''PriLevOpt''||Print Level. 0 = silent. 1 = Summary 2 = Printing  each iteration.  3 = Info about local / global solution. 4 = Progress in x.
|''f_Low''
|-valign="top"
|-valign="top"
|''PriLevSub''||Print Level in subproblem solvers, see help in ''snSolve ''and ''gnSolve''.
|''optParam''
|-valign="top"
|-valign="top"
|''f_Low''||Lower bound on the optimal function value.  If defined, used to restrict the target values into interval \[f Low,min(surface)\].
|''CGO''||See the table below but also [[common input for all CGO solvers#CGO structure|this table]] for input common to all CGO solvers
|-valign="top"
|-valign="top"
|''optParam''||Structure with optimization parameters. The following fields are used:
|''GO''||See [[common input for all CGO solvers#GO structure|common input for all CGO solvers]]
|-valign="top"
|-valign="top"
|''MaxFunc''||Maximal number of costly function evaluations, default 300 for ''rbfSolve ''and ''arbfMIP'', and default 200 for ''ego''. ''MaxFunc ''must be ''<= ''5000. If WarmStart = 1 and MaxFunc ''<= ''nFunc (Number of f(x) used) then set MaxFunc := MaxFunc + nFunc.
|''MIP''||See [[common input for all CGO solvers#MIP structure|common input for all CGO solvers]]
|-valign="top"
|-valign="top"
|''IterPrint''||Print one information line each iteration, and the new x tried. Default IterPrint = 1.  fMinI  means the best f(x) is infeasible. fMinF  means the best f(x)  is feasible (also integer feasible).
|''varargin''||Additional parameters to rbfSolve are sent to the costly f(x)
|-valign="top"
|}
|''fGoal''||Goal for function value, not used if ''inf ''or empty.
|-valign="top"
|''eps_f ''||Relative accuracy for function value, ''fTol'' == ''eps_f''.  Stop if ''<nowiki>|</nowiki>f - f Goal<nowiki>|</nowiki> <='' ''<nowiki>|</nowiki>fGoal<nowiki>|</nowiki> * fTol'', if ''fGoal'' &ne; 0. Stop if ''<nowiki>|</nowiki>f - fGoal<nowiki>|</nowiki> <= fTol'', if ''fGoal'' = 0. See the output field maxTri.
|-valign="top"
|''bTol ''||Linear constraint tolerance.
|-valign="top"
|''cTol''||Nonlinear constraint tolerance.
|-valign="top"
|''MaxIter''||Maximal  number of  iterations  used in  the  local optimization  on the  re- sponse surface in each step. Default 1000, except for pure IP problems, then max(GO.MaxFunc, MaxIter);.
|-valign="top"
|''CGO''||Structure (''Prob.CGO'') with parameters concerning global optimization options.
|-valign="top"
|''Percent''||Type of strategy to get the initial  sampled values:


{|
{|class="wikitable"
!Percent||Experimental Design||ExD
|-valign="top"
|-valign="top"
|||'''Corner strategies'''||
|colspan="2"|'''- Special RBF  algorithm parameters in Prob.CGO -'''
|-valign="top"
|-valign="top"
|900||All Corners||1
|''rbfType''||Selects type of radial basis function
|-valign="top"
|997||''x<sub>L</sub> ''+ ''x<sub>U</sub>  ''+ adjacent corners||2
|-valign="top"
|998||''x<sub>U</sub>  ''+ adjacent corners||3
|-valign="top"
|999||''x<sub>L</sub> ''+ adjacent corners||4
|-valign="top"
|||
'''Deterministic Strategies'''||
|-valign="top"
|0||User given initial  points||5
|-valign="top"
|94||DIRECT  solver ''glbFast''||6
|-valign="top"
|95||DIRECT  solver ''glcFast''||6
|-valign="top"
|96||DIRECT  solver ''glbSolve''||6
|-valign="top"
|97||DIRECT  solver ''glcSolve''||6
|-valign="top"
|98||DIRECT  solver ''glbDirect''||6
|-valign="top"
|99||DIRECT  solver ''glcDirect''||6
|-valign="top"
|||
'''Latin  Based Sampling'''||
|-valign="top"
|1||Maximin LHD 1-norm||7
|-valign="top"
|2||Maximin LHD 2-norm||8
|-valign="top"
|3||Maximin LHD Inf-norm||9
|-valign="top"
|4||Minimal Audze-Eglais||10
|-valign="top"
|5||Minimax LHD (only 2 dim)||11
|-valign="top"
|6||Latin Hypercube||12
|-valign="top"
|7||Orthogonal Samling||13
|-valign="top"
|||
'''Random  Strategies (pp in %)'''
|-valign="top"
|1pp||Circle surrounding||14
|-valign="top"
|2pp||Ellipsoid surrounding||15
|-valign="top"
|3pp||Rectangle surrounding||16
|-valign="top"
|}
 
Negative values of Percent result in constrained versions of the experimental design methods 7-16. It means that all points sampled are feasible with respect to all given constraints.
 
For ExD 5,6-12,14-16 user defined points are used.
|-valign="top"
|''nSample''||Number of sample points to be used in initial experimental design. ''nSample ''is used differently dependent on the value of Percent:


{|class="wikitable"
{|class="wikitable"
!||(n)Sample:
!Value||Type
|-valign="top"
|-
!ExD||< 0||= 0||> 0||[]
|1||Thin Plate Spline
|-valign="top"
|-
|1||2<sup>''d''</sup>
|2||Cubic Spline (default)
|-valign="top"
|-
|6||<nowiki>|</nowiki>n<nowiki>|</nowiki> iterations
|3||Multiquadric
|-valign="top"
|-
|7-11||d+1||d+1||max(''d'' + 1,''n'')||(''d'' + 1)(''d'' + 2) / 2
|4||Inverse multiquadric
|-valign="top"
|-
|12||LATIN(k)
|5||Gaussian
|-valign="top"
|-
|13||<nowiki>|</nowiki>n<nowiki>|</nowiki>
|6||Linear.
|-valign="top"
|14-16||''d ''+ 1
|}
|}


where LATIN = [21 21 33 41 51 65 65] and ''k ''= ''<nowiki>|</nowiki>nSample<nowiki>|</nowiki>''. Otherwise nSample as input does not matter.
'''Description  of the experimental  designs:'''
'''ExD  1,''' All  Corners. Initial  points is the corner points of the box given by Prob.x_L and Prob.x_U. Generates 2''<sup>d</sup> ''points, which results in too many points when the dimension is high.
'''ExD  2, '''Lower and Upper Corner point + adjacent points. Initial  points are 2 ''* d ''+ 2 corners: the lower left corner ''x<sub>L</sub>  ''and its ''d '' adjacent  corners ''x<sub>L</sub> ''+ (''x<sub>U</sub>''(''i'') - x<sub>L</sub> ''(''i'')) ''* e<sub>i</sub>, i ''= 1'', ..., d and the upper right corner ''x<sub>U</sub>  ''and its ''d ''adjacent corners ''x''<sub>U</sub>  - ''(''x<sub>U</sub> ''(''i'') ''- x<sub>L</sub> ''(''i'')) ''* e<sub>i</sub>, i ''= 1'', ..., d''
'''ExD  3. '''Initial  points are the upper right corner ''x<sub>U</sub>  ''and its ''d ''adjacent corners ''x<sub>U</sub>  - ''(''x<sub>U</sub> ''(''i'') ''- x<sub>L</sub> ''(''i'')) ''* e<sub>i</sub> , i ''= 1'', ..., d''
'''ExD  4.  '''Initial  points are the lower left corner ''x<sub>L</sub> ''and its ''d ''adjacent corners ''x<sub>L</sub> ''+ (''x<sub>U</sub> ''(''i'') ''- x<sub>L</sub> ''(''i'')) ''* e<sub>i</sub> , i ''= 1'', ..., d''
'''ExD  5.  '''User given initial  points, given as a matrix in CGO.X. Each column is one sampled point. If ''d ''>= length(Prob.x L), then size(X,1) = d, size(X,2) ''='' ''d ''+ 1. CGO.F should be defined as empty, or contain a vector of corresponding ''f ''(''x'') values. Any CGO.F value set as NaN will be computed by solver routine.
'''ExD 6. '''Use determinstic global optimization methods to find the initial design. Current methods available (all DIRECT  methods), dependent on the value of Percent:
99 = glcDirect, 98 = glbDirect, 97 = glcSolve, 96 = glbSolve, 95 = glcFast, 94 = glbFast.
'''ExD  7-11.  '''Optimal Latin Hypercube Designs (LHD) with respect to different norms. The following norms and designs are available, dependent on the value of Percent:
1 = Maximin  1-Norm, 2 = Maximin  2-Norm, 3 = Maximin  Inf-Norm,  4 = Audze-Eglais Norm, 5 = Minimax 2-Norm.
All designs taken from: [http://www.spacefillingdesigns.nl/ http://www.spacefillingdesigns.nl/]
Constrained  versions will  try  bigger  and  bigger  designs up  to  ''M'' = max(10 ''* d, nTrial'') different designs, stopping when it has found nSample feasible points.
'''ExD  12.    '''Latin  hypercube  space-filling design.  For  nSample ''< ''0, ''k  ''= ''<nowiki>|</nowiki>nSample<nowiki>|</nowiki> ''should in principle be the problem dimension. The number of points sampled is:
k : 2 3 4 5 6 ''> ''6
Points : 21 33 41 51 65 65
The call made is: X = daceInit(abs(nSample),Prob.x_L,Prob.x_U);
Set nSample = [] to get (d+1)*(d+2)/2 sampled points:
d : 1 2 3 4 5 6 7 8 9 10
Points : 3 6 10 15 21 28 36 45 55 66
This is a more efficient number of points to use.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as already sampled points. Then nSample additional points are sampled, restricted to be close to the given points.
Constrained version of Latin hypercube only  keep points  that fulfill the linear  and  nonlinear constraints. The algorithm will try up to ''M'' = ''max''(10 ''* d, nTrial'') points, stopping when it has found nSample feasible points (''d ''+ 1 points if ''nSample < ''0).
'''ExD  13. '''Orthogonal Sampling, LH with subspace density demands.
'''ExD  14-16'''. Random strategies, the ''<nowiki>|</nowiki>Percent<nowiki>|</nowiki> ''value gives the percentage size of an ellipsoid, circle or rectangle around the so far sampled points that new points are not allowed in. Range 1%-50%. Recommended values 10% - 20%. If CGO.X is nonempty, these points are verified as in ExD 5, and treated as already sampled points. Then nSample additional points are sampled, restricted to be close to the given points.
|-valign="top"
|''X,F,CX''||The fields X,F,CX are used to define user given points. ExD = 5 (Percent = 0) needs this information. If ExD == 6-12,14-16 these points are included into the design.
|-valign="top"
|''X''||A matrix  of initial  x values. One column for every x value.  If ExD == 5, size(X,2) ''>= ''dim(x)+1  needed.
|-valign="top"
|''F''||A vector of initial ''f ''(''x'') values. If any element is set to NaN it will be computed.
|-valign="top"
|''CX''||Optionally  a matrix  of nonlinear constraint  c(x) values.  If  nonempty, then size(CX,2) == size(X,2).  If  any element  is set as NaN, the vector c(x) = CX(:,i)  will be recomputed.
|-valign="top"
|''RandState''||If ''>= ''0, ''rand''(''<nowiki>'</nowiki>state<nowiki>'</nowiki>, RandState'') is set to initialize the pseudo-random generator.  If ''< ''0, ''rand''(''<nowiki>'</nowiki>state<nowiki>'</nowiki>, ''100 ''* clock'') is set to give a new set of random values each run. If isnan(RandState), the random state is not initialized.  RandState will influence if a stochastic initial experimental design is applied, see input Percent and nSample. RandState will also influence if using the ''multiMin  ''solver, but the random state seed is not reset in ''multiMin''.  The state of the random generator is saved in the warm start output rngState, and the random generator is reinitialized with this state if warm start is used. Default RandState = 0.
|-valign="top"
|''AddMP''||If = 1, add the midpoint as extra point in the corner strategies. Default 1 for any corner strategy, i.e. Percent is 900, 997, 998 or 999.
|-valign="top"
|''nTrial''||For experimental design CLH, the method generates ''M ''= ''max''(10 ''* d, nTrial'') trial  points, and evaluate them until ''nSample ''feasible points  are found.  In the random designs, ''nTrial  ''is the maximum number of trial  points randomly generated for each new point to sample.
|-valign="top"
|''CLHMethod''||Different search strategies for finding feasible LH points. First of all, the least infeasible point  is added.  Then the linear feasible points are considered. If more points are needed still, the nonlinear infeasible points are added.
1 - Take the sampled infeasible points in order.
2 - Take a random sample of the infeasible points.
3 - Use points with lowest constraint error (cErr).
|-valign="top"
|-valign="top"
|''SCALE''||0 - Original search space (default if any integer values).
|''infStep''||If =1, add search step with target value ''-inf'' first in cycle.<br>Default 0. Always =1 for the case ''fStartRule'' == 3


1 - Transform search space to unit cube (default if no integers).
|-valign="top"
|-valign="top"
|''REPLACE''||0 - No replacement, default for constrained problems.
|''fStarRule''||Global-Local search strategy. N = cycle length.<br>Define ''min_sn'' as the global minimum on surface.


1 - Large function values are replaced by the median.
{|class="wikitable"
!Value||fStar target value
|-
|1||''min_sn - ''((''N - ''(''n - nInit''))''/N '')<sup>2</sup>'' * ''Delta<sub>n</sub>'' (Default)
|-
|2||''min_sn'' - (''N'' - (''n'' - ''nInit''))/''N'' * ''Delta<sub>n</sub>''.
|-
|colspan="2"|Strategy 1 and 2 depends on ''Delta<sub>n</sub>'' estimate (see ''DeltaRule'').
|-
|3||-inf-step, ''min_sn''-''k'' *0.1*<nowiki>|</nowiki>min_sn<nowiki>|</nowiki> k = N,...,0.
|-
|colspan="2"|If ''infStep'' true, addition of -inf-step first in cycle.
|}


''> ''1 - Large values Z are replaced by new values. The replacement is defined as ''Z '':= ''FMAX ''+ ''log''10(''Z - FMAX ''+ 1), where ''FMAX  ''= 10<sup>''REPLACE ''</sup>, if ''min''(''F '') ''< ''0 and ''FMAX  ''= 10<sup>(''ceil''(''log''10(''min''(''F '')))+''REPLACE'')</sup>, if ''min''(''F '') ''= ''0. A new replacement is computed in every iteration, because ''min''(''F '') may change. Default REPLACE = 5, if no linear or nonlinear constraints.
|-valign="top"
|-valign="top"
|''LOCAL''||0 - No local searches after global search. If RBF surface is inaccurate, might be an advantage.
|''DeltaRule''||1 = Skip large f(x) when computing f(x) interval ''Delta''.<br>0 = Use all points.<br>If ''objType'' > 0, default ''DeltaRule'' = 0, otherwise default is 1.


1 - Local search from best points after global search. If equal best function values, up to 20 local searches are done.
|-valign="top"
|-valign="top"
|''SMOOTH''||1 - The problem is smooth enough for local search using numerical gradient estimation methods (default).
|''AddSurfMin''||Add up to ''AddSurfMin'' interior local minima on RBF surface as search points, based on estimated Lipschitz constants. ''AddSurfMin''=0  implies no additional minimum  added (Default ''AddSurfMin''==1).<br>Only possible if ''globalSolver'' = ''multiMin'' or glcDirect. <br>Test for additional  minimum  in local step (modN == N)<br>modN = -2,-3,-4,... are iteration steps with these search points.
 
0 - The problem is nonsmooth or noisy, and local search methods using numer- ical gradient estimation are likely to produce garbage search directions.
|-valign="top"
|-valign="top"
|''globalSolver''||Global optimization  solver used for subproblem optimization.    Default ''glcCluster  ''(SMOOTH=1)    or  ''glcDirect  ''(SMOOTH=0).      If  the  global- Solver is ''glcCluster'', the fields ''Prob.GO.maxFunc1'', ''Prob.GO.maxFunc2'', ''Prob.GO.maxFunc3'', ''Prob.GO.localSolver'', ''Prob.GO.DIRECT ''and other fields set in ''Prob.GO ''are used. See the help for these parameters in ''glcCluster''.
|''TargetMin''||Which minimum of several to pick in  target value problem:
|-valign="top"
|''localSolver''||Local optimization solver used for subproblem optimization. If not defined, the TOMLAB default constrained NLP solver is used.


'''- Special RBF  algorithm  parameters in Prob.CGO -'''
{|class="wikitable"
|-valign="top"
!Value||Minimum picked
|''rbfType''||Type of radial basis function: 1 - thin plate spline; 2 - Cubic Spline (default); 3 - Multiquadric; 4 - Inverse multiquadric; 5 - Gaussian; 6 - Linear.
|-
|-valign="top"
|0||Use global minimum.
|''idea''||Type of search strategy on the response surface.
|-
 
|1||Use best interior local minima, if none use global minimum.
''idea ''= 1 - cycle of N+1 points in target value ''fnStar''.
|-
 
|2||Use best interior local minima, if none use RBF interior minimum.
if ''fStarRule ''=3, then N=1 default, otherwise N=4 default.
|-
|3||Use best minimum with lowest number of coefficients on bounds.  
|}
Default is ''TargetMin'' = 3.


By default ''idea ''=1, ''fStarRule ''=1, i.e. ''N ''=4.  To change ''N'', see below.
''idea ''= 2 - cycle of 4 points (N+1, N=3 always) in ''alpha''. ''alpha ''is a bound on an algorithmic constraint that implicitly sets a target value ''fStar''.
|-valign="top"
|-valign="top"
|''N''||Cycle length in idea 1 (default N=1 for fStarRule 3, otherwise default N=4) or idea 2 (always N=3).
|''eps_sn''||Relative tolerance used to test if the minimum of surface, ''min_sn'', is sufficiently lower than the best point (''fMin'') found. Default is ''eps_sn'' = 10<sup>-7</sup>.
|-valign="top"
|''infStep''||If =1, add search step with target value ''-8 ''first in cycle. Default 0. Always
 
=1 for the case ''idea ''=1, ''fStarRule ''=3.
|-valign="top"
|''fStarRule''||Global-Local search strategy in idea 1, where N is the cycle  length.  Define ''minsn  ''as the global minimum on the RBF surface. The following strategies for setting the target value ''fStar ''is defined:  1: ''fStar ''= ''min<sub>sn</sub> - ''((''N - ''(''n - nInit''))''/N '')<sup>2</sup> ''* ''&Delta;''n ''(Default), 2: ''fStar ''= ''min<sub>sn</sub> - ''(''N - ''(''n - nInit''))''/N * ''&Delta;''n ''.
 
Strategy 1 and 2 depends on &Delta; ''<sub>n</sub> ''estimate  (see DeltaRule). If ''infStep ''=1, add <math>-\infty</math>-step first in cycle. 3: fStar = <math>-\infty</math>-step, ''min<sub>sn</sub>-k *''0''.''1''*<nowiki>|</nowiki>min<sub>sn</sub><nowiki>|</nowiki>k ''= ''N, ..., ''0.
 
These strategies had the following names in Gutmanns thesis: III, II, I.
|-valign="top"
|''DeltaRule''||1 = Skip large f(x) when computing f(x) interval ?.  0 = Use all points. Default 1.
|-valign="top"
|''AddSurfMin''||Add up to AddSurfMin interior local minima on RBF surface as search points, based on estimated Lipschitz constants. AddSurfMin=0  implies no additional minimum  added (Default).    This  option  is only possible if  ''globalSolver  ''= ''multiMin''.    Test for additional  minimum  is done in  the local step (modN == N)  If  these additional local minima are used, in the printout modN = ''-''2'', -''3'', -''4'', ... ''are the iteration steps with these search points.
|-valign="top"
|''TargetMin''||Which minimum, if several minima found, to select in the target value problem:
 
=0 Use global minimum.
 
=1 Use best interior local minima, if none use global minimum.


=2 Use best interior local minima, if none use RBF interior minimum.
=3 Use best minimum with lowest number of coefficients on bounds.
Default is ''TargetMin ''= 3.
|-valign="top"
|''eps_sn''||Relative tolerance used to test if the minimum of the RBF surface, ''min<sub>sn</sub> '', is sufficiently lower than the best point (''fM in '') found (default is 10<sup>-7</sup> ).
|-valign="top"
|''MaxCycle''||Max number of cycles without progress before stopping, default 10.
|-valign="top"
|''GO''||Structure ''Prob.GO ''(Default values are set for all fields).
The following fields are used:
|-valign="top"
|''MaxFunc''||Maximal number of function evaluations in each global search.
|-valign="top"
|''MaxIter''||Maximal number of iterations in each global search.
|-valign="top"
|''DIRECT''||DIRECT  solver used in glcCluster, either glcSolve or glcDirect(default).
|-valign="top"
|''maxFunc1''||glcCluster parameter, maximum number of function evaluations in the first call. Only used if globalSolver is glcCluster, see help globalSolver.
|-valign="top"
|''maxFunc2''||glcCluster parameter, maximum number of function evaluations in the second call. Only used if globalSolver is glcCluster, see help globalSolver.
|-valign="top"
|''maxFunc3''||glcCluster parameter, maximum sum of function evaluations in repeated first calls to DIRECT routine when trying to get feasible. Only used if globalSolver is glcCluster, see help ''globalSolver''.
|-valign="top"
|''localSolver''||The local solver used by glcCluster. If not defined, then ''Prob.CGO.localSolver'' is used
|-valign="top"
|''MIP''||Structure in Prob, Prob.MIP.
Defines integer optimization parameters. Fields used:
|-valign="top"
|''IntVars''||If empty, all variables are assumed non-integer.
If islogical(IntVars)  (=all  elements  are 0/1),  then 1 = integer variable, 0 = continuous variable.  If  any element  ''> ''1, IntVars  is the indices for integer variables.
|-valign="top"
|''varargin''||Other parameters directly sent to low level routines.
|}
|}


==Description  of Outputs==
==Description  of Outputs==
Structure with result from optimization. The following fields are changed:
 
===Result structure===
The output structure ''Result'' contains results from the optimization.<br>The following fields are set:


{|class="wikitable"
{|class="wikitable"
!Field||Description
!Field||Description
|-valign="middle"
|''x_k''||rowspan="5"|See [[Common output for all CGO solvers|Common output for all CGO solvers]] for details.
|-valign="top"
|-valign="top"
|''x_k''||Matrix with the best points as columns.
|''f_k''
|-valign="top"
|-valign="top"
|''f_k''||The best function value found so far.
|''Iter''
|-valign="top"
|-valign="top"
|''Iter''||Number of iterations.
|''FuncEv''
|-valign="top"
|-valign="top"
|''FuncEv''||Number of function evaluations.
|''ExitText''
|-valign="top"
|-valign="top"
|''ExitText''||Text string with information about the run.
|''ExitFlag''||Always 0, except<br>1 = Initial interpolation failed, normally because too huge f(x).
|-valign="top"
|''ExitFlag''||Always 0.
|-valign="top"
|''CGO''||Subfield ''WarmStartInfo'' saves warm start information, the same information as in cgoSave.mat, see below.
|-valign="top"
|-valign="top"
|''Inform''||Information parameter.
|''Inform''||Information parameter.


0 = Normal termination.
{|class="wikitable"
!Value||Signification
|-
|0||Normal termination.
|-
|1||Function value f(x) is less than fGoal.
|-
|2||Error in function value ''f ''(''x'')'', <nowiki>|</nowiki>f - fGoal<nowiki>|</nowiki> <= fTol, fGoal ''= 0''.''
|-
|3||Relative Error in function value ''f ''(''x'') is less than fTol, i.e. <nowiki>|</nowiki>f - fGoal<nowiki>|</nowiki>/<nowiki>|</nowiki>fGoal<nowiki>|</nowiki> <= fTol.


1 = Function value f(x) is less than fGoal.
<!-- Removed for now
|-
|4||No new point sampled for MaxCycle iteration steps.
|-
|5||All sample points same as the best point for MaxCycle last iterations.
|-
|8||No progress for ''MaxCycle * ''(''N ''+ 1) + 1 function evaluations (''> MaxCycle'' cycles, input CGO.MaxCycle).
-->
|-
|6||All sample points same as previous point for the last 11 iterations.
|-
|7||All feasible integers tried.
|-
|9||Max CPU Time reached.
|}


2 = Error in function value ''f ''(''x'')'', <nowiki>|</nowiki>f - fGoal<nowiki>|</nowiki> <= fTol, fGoal ''= 0''.''
|-valign="top"
|''CGO''||Subfield ''WarmStartInfo'' saves warm start information, the same information as in cgoSave.mat, see [[Common output for all CGO solvers#WSInfo]].
|}


3 = Relative Error in function value ''f ''(''x'') is less than fTol, i.e. <nowiki>|</nowiki>f - fGoal<nowiki>|</nowiki> <nowiki>|</nowiki>fGoal<nowiki>|</nowiki> <= fTol.
===Output printing===


4 = No new point sampled for MaxCycle iteration steps.
{|class="wikitable"
!colspan="2"|PRINTING in MATLAB window in Iteration 0 after Experimental Design
|- style="text-align:center;"
|colspan="2"|'''If IterPrint >= 1 or PriLev > 1'''
|-
|colspan="2"|'''''Row 1'''''
|-
|''Iter''  ||Number of iterations
|-
|''n''    ||Number of trial ''x'', ''n''-''Iter'' is number of points in initial design
|-
|''nFunc'' ||Number of costly f(x) computed, ''nFunc'' <= ''n'', ''n''-''nFunc'' = rejected points
|-
|<nowiki>--->></nowiki> ||Time stamp (date and exact time of this printout)
|-
|''N''        ||Cycle length ''Prob.CGO.N''<br>0 to ''N''-1 are global steps. Last step ''N'' in cycle is surface minimum
|-
|''fStarRule''||Cycle strategy
|-
|''DeltaRule''||See help [[CGO rbfSolve#Description of Inputs|''Prob.CGO.DeltaRule'']]
|-
|''infStep''  ||See help [[CGO rbfSolve#Description of Inputs|''Prob.CGO.infStep]]
|-
|fGoal ||Goal value (if set)
|-
|fMin  ||Best f(x) found so far. E.g. at 27/It 12 means ''n''=27, ''Iter''=12<br>''fMinI'' means the best f(x) is infeasible<br>''fMinF'' means the best f(x) is feasible (also integer feasible)
|-
|colspan="2"|'''''Row 2'''''
|-
|''max(F)''||Maximum of all f(x) in the initial set of points ''X''
|-
|''med(X)''||Median of all f(x) in the initial set of points ''X''
|-
|''rng(F)''||''maxF''-''fMin'', the range of f(x) values in the initial set ''X''
|-
|''pDist'' ||The size of the simply bounded region, <nowiki>||</nowiki>''x_U''-''x_L''<nowiki>||</nowiki><sub>2<sub>
|-
|''LipU''  ||Maximum Lipschitz constant for initial set ''X''
|-
|''LipUFt''||Maximum Lipschitz constant for initial set ''X'', using transform F
|-
|''objType''||Function transformation used during run, one of 0 to 8.
|-
|colspan="2"|'''''Row 3'''''
|-
|''xMin''  ||Best point in initial set X
|-
|colspan="2"|'''''Row 4'''''
|-
|''xOptS''||User-given global optimum ''Prob.x_opt'' (if defined)
|- style="text-align:center;"
|colspan="2"|'''If ''PriLev'' > 2 and global optimum ''xOptS'' known and given in ''Prob.x_opt'' '''
|-
|colspan="2"|'''''Row 5'''''
|-
|''xOptS''||The known global optimum
|-
|colspan="2"|'''''Row 6'''''
|-
|''SumXO'' ||Sum of distances from global optimum ''xOptS'' to all sampled points ''X'' in experimental design
|-
|''MeanXO''||Mean of distances from global optimum ''xOptS'' to all sampled points ''X'' in experimental design
|-
|doO    ||Distance from global optimum ''xOptS'' to closest point of sampled points ''X'' in experimental design
|- style="text-align:center;"
|colspan="2"|'''If ''PriLev'' > 3'''
|-
|dXO    ||Minimal distance from global optimum to closest point of all sampled points ''X'' in experimental design
|-
|''snOptf''||Surface value at ''xOptS'', ''sn_f(xOptS)''
|-
|''snOptg''||Surface gradient at ''xOptS'', ''sn_g(xOptS)''
|-
|''snOptE''||Sum of negative eigenvalues of surface Hessian at ''xOptS'', sum((eig(sn_H(xOptS)) < 0))
|}


5 = All sample points same as the best point for MaxCycle last iterations.
{|class="wikitable"
!colspan="2"|PRINTING in MATLAB window in Iteration 1,2, ...
|- style="text-align:center;"
|colspan="2"|'''''if ''IterPrint'' >= 1 or ''PriLev'' > 1'''''
|-
|colspan="2"|'''Row 1'''
|-
|''Iter''||Number of iterations
|-
|''n''  ||Number of trial x, ''n''-''Iter'' is number of points in initial design
|-
|''nFunc''  ||Number of costly f(x) computed, ''nFunc'' <= ''n'', ''n''-''nFunc'' = rejected pnts
|-
|<nowiki>--->></nowiki>  ||Time stamp (date and exact time of this printout)
|-
|''fGoal''  ||Goal value (if set)
|-
|''fMin''    ||Best f(x) found so far. E.g. at 27/It 12 means n=27, Iter=12<br>''fMinI'' means the best f(x) is infeasible<br>''fMinF'' means the best f(x) is feasible (also integer feasible)<br>''IT'' implies reduction in last step, ''It'' no reduction last step
|-
|colspan="2"|'''Row 2 Header line'''
|-
|colspan="2"|
{|class="wikitable"
|#||f(x)||Task||onB||fnStar||doX||doM||doS||surfErr||f-Reduc||doO||ln10(my)
|}
|-
|colspan="2"|'''Row 3 to m+2 with m new sample points ''xNew(1,1:m)'' obtained in last iteration
|-
|''#''      ||i''th'' new point x = ''xNew(:,i)
|-
|''f(x)''  ||Costly f(x) value at x
|-
|''Task''  ||Which method that gave the new point
{|class="wikitable
!Value||Method
|-
|0,1,...,N-1||Global minimum in Target value search using target value fnStar
|-
|N ||Global minimum of RBF surface
|-
| -1||Global minimum of Target value -inf search (infStep)
|-
| -2,-3, ... ||Additional ''AddGNMin'' minima in Target Value Search
|-
| -2,-3, ... ||Additional ''AddSurfMin'' minima in RBF surface minimization
|-
|999||Rescue
|-
| -7  ||Sample point inside local shrinked box
|-
| -8  ||Random sample point inside the full box defined by [x_L,x_U]
|-
| -9  ||Sample point using randomdesign
|}


6 = All sample points same as previous point for MaxCycle last iterations.
|-
 
|''onB''    ||Number of coordinates on bound for new point, ''onB(x)''
7 = All feasible integers tried.
|-
 
|''fnStar''||Target value used obtaining new point
8 = No progress for ''MaxCycle * ''(''N ''+ 1) + 1 function evaluations (''> MaxCycle'' cycles, input CGO.MaxCycle).
|-
 
|''doX''    ||Minimal distance from ''x'' to sample set ''X'', min<nowiki>||</nowiki>''x-X''<nowiki>||</nowiki>
9 = Max CPU Time reached.
|-
|-valign="top"
|''doM''   ||Distance from ''x'' to (''xMin'',''fMin''), best point found, min<nowiki>||</nowiki>''x-xMin''<nowiki>||</nowiki>
|''cgoSave.mat''||To make a warm start possible, all CGO solvers  saves information in the file cgoSave.mat.  The file is created independent of the solver, which enables the user to call any CGO solver using the warm start information. cgoSave.mat is a MATLAB mat-file saved to the current directory. If the parameter SAVE is 1, the CGO solver saves  the mat file every iteration,  which enables the user to  break the run and restart using warm start from the current  state. SAVE = 1 is currently always set by the CGO solvers. If the cgoSave.mat file fails to open for writing,  the information is also available in the output field Result.CGO.WarmStartInfo,  if the run was concluded without  interruption. Through a call to WarmDefGLOBAL, the Prob structure can be setup for warm start.  In this case, the CGO solver will not load the data from cgoSave.mat. The file contains the following variables:
|-
|-valign="top"
|''doS''    ||Distance from ''x'' to minimum on surface, min<nowiki>||</nowiki>''x-min_sn_y''<nowiki>||</nowiki>
|''Name''||Problem name. Checked against the ''Prob.Name ''field if doing a warmstart.
|-
|-valign="top"
|''surfErr''||Error between predicted and actual value of f(x), i.e. Costly f(x) - Surface value at ''x''
|''O''||Matrix  with sampled points (in original space).
|-
|-valign="top"
|''f-Reduc''||Function value reduction if ''fNew'' < ''fMin''
|''X''||Matrix  with sampled points (in unit space if SCALE==1)
|-
|-valign="top"
|''doO''   ||Distance from ''x'' to global optimum ''xOptS'' <nowiki>||</nowiki>''x-xOptS''<nowiki>||</nowiki> (if ''Prob.x_opt'' specified)
|''F''||Vector with function values (penalty added for costly Cc(x))
|-
|-valign="top"
|''ln10(my)''||Coefficient my in RBF interpolation
|''F_m''||Vector with function values (replaced).
|-
|-valign="top"
|''x:''     ||x values for i:''th'' point, scaled back i ''SCALE'' == 1
|''F00''||Vector of pure function values, before penalties. ''Cc ''MMatrix  with costly constraint values, ''C c''(''x''). ''nInit ''Number of initial  points.
|-
|-valign="top"
|colspan="2"|'''Row m+3 with values for current global surface minimum (min_sn_y, min_sn)
|''Fpen''||Vector with function values + additional penalty if infeasible using the linear constraints and noncostly nonlinear ''c''(''x'').
|-
|-valign="top"
|''Sn''     ||f(x) = ''min_sn'', ''onB', ''doX'', ''doM'', ''doO'' values for ''min_sn_y'', and ''x:'' are values for ''min_sn_y'' transformed back to original coordinates if ''SCALE'' == 1
|''fMinIdx''||Index of the best point found.
|-
|-valign="top"
|colspan="2"|'''''NOTE: All distances measured are in ''SCALED'' space [0,1]<sup>d</sup>, if ''SCALE' == 1'''''
|''rngState''||Current state of the random number generator used.
|-
|colspan="2"|'''Row m+4 Status row when updating RBF. Interpolation quality, illconditioning etc'''
|-
|''LU''        ||Estimate of condition number for current interpolation matrix
|-
|''minDist''    ||Minimal distance between points in sample set ''X'', if small value ill-conditioning might occur
|-
|''errsnFLast'' ||Difference between f(x) transformed and RBF surface value at last point added
|-
|''errsnFmax'' ||Worst difference between f(x) transformed and RBF surface for ''x'' in set ''X'', idx for worst point given.
|-
|''errCVmin''  ||Value and index for point with least cross validation error
|-
|''errCVminR'' ||Value and index for point with least cross validation error normalized with <nowiki>|</nowiki>f(x)<nowiki>|</nowiki>
|-
|''CrossVal''   ||Cross validation measure, deleting one interpolation point at the time
|-
|''InterpErr''  ||Maximal interpolation error using f(x) non-transformed. OK if < 10<sup>-6</sup>
|}
|}


Line 441: Line 421:
>> clear cgolib
>> clear cgolib
</pre>
</pre>
[[Category:CGO]]

Latest revision as of 17:15, 21 June 2014

Notice.png

This page is part of the CGO Manual. See CGO Manual.

Purpose

Solve general constrained mixed-integer global black-box optimization problems with costly objective functions.

The optimization problem is of the following form

where ; ; the linear constraints are defined by , ; and the nonlinear constraints are defined by . The variables are restricted to be integers, where is an index subset of possibly empty. It is assumed that the function is continuous with respect to all variables, even if there is a demand that some variables only take integer values. Otherwise it would not make sense to do the surrogate modeling of used by all CGO solvers.

f (x) is assumed to be a costly function while c(x) is assumed to be cheaply computed. Any costly constraints can be treated by adding penalty terms to the objective function in the following way:

where weighting parameters wj have been added. The user then returns p(x) instead of f (x) to the CGO solver.

Calling Syntax

Result = rbfSolve(Prob,varargin) 
Result = tomRun('rbfSolve', Prob);

Usage

See CGO solver usage

Description of Inputs

Problem structure

The following fields are used in the problem description structure Prob:

Field Description
Name See Common input for all CGO solvers
FUNCS.f
FUNCS.c
x_L
x_U
b_U
b_L
A
c_L
c_U
WarmStart
MaxCPU
user
PriLevOpt
f_Low
optParam
CGO See the table below but also this table for input common to all CGO solvers
GO See common input for all CGO solvers
MIP See common input for all CGO solvers
varargin Additional parameters to rbfSolve are sent to the costly f(x)
- Special RBF algorithm parameters in Prob.CGO -
rbfType Selects type of radial basis function
Value Type
1 Thin Plate Spline
2 Cubic Spline (default)
3 Multiquadric
4 Inverse multiquadric
5 Gaussian
6 Linear.
infStep If =1, add search step with target value -inf first in cycle.
Default 0. Always =1 for the case fStartRule == 3
fStarRule Global-Local search strategy. N = cycle length.
Define min_sn as the global minimum on surface.
Value fStar target value
1 min_sn - ((N - (n - nInit))/N )2 * Deltan (Default)
2 min_sn - (N - (n - nInit))/N * Deltan.
Strategy 1 and 2 depends on Deltan estimate (see DeltaRule).
3 -inf-step, min_sn-k *0.1*|min_sn| k = N,...,0.
If infStep true, addition of -inf-step first in cycle.
DeltaRule 1 = Skip large f(x) when computing f(x) interval Delta.
0 = Use all points.
If objType > 0, default DeltaRule = 0, otherwise default is 1.
AddSurfMin Add up to AddSurfMin interior local minima on RBF surface as search points, based on estimated Lipschitz constants. AddSurfMin=0 implies no additional minimum added (Default AddSurfMin==1).
Only possible if globalSolver = multiMin or glcDirect.
Test for additional minimum in local step (modN == N)
modN = -2,-3,-4,... are iteration steps with these search points.
TargetMin Which minimum of several to pick in target value problem:
Value Minimum picked
0 Use global minimum.
1 Use best interior local minima, if none use global minimum.
2 Use best interior local minima, if none use RBF interior minimum.
3 Use best minimum with lowest number of coefficients on bounds.

Default is TargetMin = 3.

eps_sn Relative tolerance used to test if the minimum of surface, min_sn, is sufficiently lower than the best point (fMin) found. Default is eps_sn = 10-7.

Description of Outputs

Result structure

The output structure Result contains results from the optimization.
The following fields are set:

Field Description
x_k See Common output for all CGO solvers for details.
f_k
Iter
FuncEv
ExitText
ExitFlag Always 0, except
1 = Initial interpolation failed, normally because too huge f(x).
Inform Information parameter.
Value Signification
0 Normal termination.
1 Function value f(x) is less than fGoal.
2 Error in function value f (x), |f - fGoal| <= fTol, fGoal = 0.
3 Relative Error in function value f (x) is less than fTol, i.e. |f - fGoal|/|fGoal| <= fTol.
6 All sample points same as previous point for the last 11 iterations.
7 All feasible integers tried.
9 Max CPU Time reached.
CGO Subfield WarmStartInfo saves warm start information, the same information as in cgoSave.mat, see Common output for all CGO solvers#WSInfo.

Output printing

PRINTING in MATLAB window in Iteration 0 after Experimental Design
If IterPrint >= 1 or PriLev > 1
Row 1
Iter Number of iterations
n Number of trial x, n-Iter is number of points in initial design
nFunc Number of costly f(x) computed, nFunc <= n, n-nFunc = rejected points
--->> Time stamp (date and exact time of this printout)
N Cycle length Prob.CGO.N
0 to N-1 are global steps. Last step N in cycle is surface minimum
fStarRule Cycle strategy
DeltaRule See help Prob.CGO.DeltaRule
infStep See help Prob.CGO.infStep
fGoal Goal value (if set)
fMin Best f(x) found so far. E.g. at 27/It 12 means n=27, Iter=12
fMinI means the best f(x) is infeasible
fMinF means the best f(x) is feasible (also integer feasible)
Row 2
max(F) Maximum of all f(x) in the initial set of points X
med(X) Median of all f(x) in the initial set of points X
rng(F) maxF-fMin, the range of f(x) values in the initial set X
pDist The size of the simply bounded region, ||x_U-x_L||2
LipU Maximum Lipschitz constant for initial set X
LipUFt Maximum Lipschitz constant for initial set X, using transform F
objType Function transformation used during run, one of 0 to 8.
Row 3
xMin Best point in initial set X
Row 4
xOptS User-given global optimum Prob.x_opt (if defined)
If PriLev > 2 and global optimum xOptS known and given in Prob.x_opt
Row 5
xOptS The known global optimum
Row 6
SumXO Sum of distances from global optimum xOptS to all sampled points X in experimental design
MeanXO Mean of distances from global optimum xOptS to all sampled points X in experimental design
doO Distance from global optimum xOptS to closest point of sampled points X in experimental design
If PriLev > 3
dXO Minimal distance from global optimum to closest point of all sampled points X in experimental design
snOptf Surface value at xOptS, sn_f(xOptS)
snOptg Surface gradient at xOptS, sn_g(xOptS)
snOptE Sum of negative eigenvalues of surface Hessian at xOptS, sum((eig(sn_H(xOptS)) < 0))
PRINTING in MATLAB window in Iteration 1,2, ...
if IterPrint >= 1 or PriLev > 1
Row 1
Iter Number of iterations
n Number of trial x, n-Iter is number of points in initial design
nFunc Number of costly f(x) computed, nFunc <= n, n-nFunc = rejected pnts
--->> Time stamp (date and exact time of this printout)
fGoal Goal value (if set)
fMin Best f(x) found so far. E.g. at 27/It 12 means n=27, Iter=12
fMinI means the best f(x) is infeasible
fMinF means the best f(x) is feasible (also integer feasible)
IT implies reduction in last step, It no reduction last step
Row 2 Header line
# f(x) Task onB fnStar doX doM doS surfErr f-Reduc doO ln10(my)
Row 3 to m+2 with m new sample points xNew(1,1:m) obtained in last iteration
# ith new point x = xNew(:,i)
f(x) Costly f(x) value at x
Task Which method that gave the new point
Value Method
0,1,...,N-1 Global minimum in Target value search using target value fnStar
N Global minimum of RBF surface
-1 Global minimum of Target value -inf search (infStep)
-2,-3, ... Additional AddGNMin minima in Target Value Search
-2,-3, ... Additional AddSurfMin minima in RBF surface minimization
999 Rescue
-7 Sample point inside local shrinked box
-8 Random sample point inside the full box defined by [x_L,x_U]
-9 Sample point using randomdesign
onB Number of coordinates on bound for new point, onB(x)
fnStar Target value used obtaining new point
doX Minimal distance from x to sample set X, min||x-X||
doM Distance from x to (xMin,fMin), best point found, min||x-xMin||
doS Distance from x to minimum on surface, min||x-min_sn_y||
surfErr Error between predicted and actual value of f(x), i.e. Costly f(x) - Surface value at x
f-Reduc Function value reduction if fNew < fMin
doO Distance from x to global optimum xOptS ||x-xOptS|| (if Prob.x_opt specified)
ln10(my) Coefficient my in RBF interpolation
x: x values for i:th point, scaled back i SCALE == 1
Row m+3 with values for current global surface minimum (min_sn_y, min_sn)
Sn f(x) = min_sn, onB', doX, doM, doO values for min_sn_y, and x: are values for min_sn_y transformed back to original coordinates if SCALE == 1
NOTE: All distances measured are in SCALED space [0,1]d, if SCALE' == 1
Row m+4 Status row when updating RBF. Interpolation quality, illconditioning etc
LU Estimate of condition number for current interpolation matrix
minDist Minimal distance between points in sample set X, if small value ill-conditioning might occur
errsnFLast Difference between f(x) transformed and RBF surface value at last point added
errsnFmax Worst difference between f(x) transformed and RBF surface for x in set X, idx for worst point given.
errCVmin Value and index for point with least cross validation error
errCVminR Value and index for point with least cross validation error normalized with |f(x)|
CrossVal Cross validation measure, deleting one interpolation point at the time
InterpErr Maximal interpolation error using f(x) non-transformed. OK if < 10-6

Description

rbfSolve implements the Radial Basis Function (RBF) algorithm based on the work by Gutmann. The RBF method is enhanced to handle linear equality and inequality constraints, and nonlinear equality and inequality constraints, as well as mixed-integer problems.

A response surface based on radial basis functions is fitted to a collection of sampled points. The algorithm then balances between minimizing the fitted function and adding new points to the set.

M-files Used

daceInit.m, iniSolve.m, endSolve.m, conAssign.m, glcAssign.m, snSolve.m, gnSolve.m, expDesign.m.

MEX-files Used

tomsol

See Also

ego.m

Warnings

Observe that when cancelling with CTRL+C during a run, some memory allocated by rbfSolve will not be deal- located. To deallocate, do:

>> clear cgolib